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Abstract The asymptotic analysis of certain public
good models for p2p systems suggests that when the aim
is to maximize social welfare a fixed contribution scheme
in terms of the number of files shared can be asymptot-
ically optimal as the number of participants n grows to
infinity. Such a simple scheme eliminates free riding, is
incentive compatible and obtains a value of social welfare
that is within o(n) of that obtained by the second-best
policy of the corresponding mechanism design formula-
tion of the problem. We extend our model to account
for file popularity, and discuss properties of the resulting
equilibria. The fact that a simple optimization problem
can be used to closely approximate the solution of the ex-
act model (which is in most cases practically intractable
both analytically and computationally), is of great im-
portance for studying several interesting aspects of the
system. We consider the evolution of the system to equi-
librium in its early life, when both peers and the system
planner are still learning about system parameters. We
also analyse the case of group formation when peers be-
long to different classes (such as DSL and dial-up users),
and it may be to their advantage to form distinct groups
instead of a larger single group, or form such a larger
group but avoid disclosing their class. We finally discuss
the game that occurs when peers know that a fixed fee
will be used, but the distribution of their valuations is
unknown to the system designer.

1 Asymptotically optimal mecha-

nism design

Suppose that peers 1, . . . , n are to share the use of a
public good. The good can be provided at quantity Q
for a cost of c(Q). Peer i has a utility for the good
of θiu(Q), where θi is a ‘preference parameter’ which is
known only to peer i, but which is a random sample
from a distribution on [0, 1], with distribution function
H(·) and density function h(·). Knowing n and H(·),
a social planner wishes to design a mechanism which,
as a function of the declared θ = (θ1, . . . , θn), sets Q,
determines which peers may use the good and what fees
they should pay. These fees are to cover the cost c(Q).
Note the assumption that a peer may be excluded from
using the good. Given knowledge of this mechanism,
each peer declares his θi. The mechanism then sets Q(θ)
and also decides which peers may use the good. If peer
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i is excluded from using the good then πi(θ) = 0. If
he is allowed to use it, then πi(θ) = 1 and he must pay
a fee pi(θ). In (1)–(2) that follow the expectation is
taken over θ and in (3)–(4) it is taken over θ−i, where
this denotes all the preferences parameters apart from θi.
The mechanism design problem is to maximize expected
social welfare:

maximize
π1(·),...,πn(·), Q(·)

E [
∑

i πi(θ)θiu(Q(θ)) − c(Q(θ))] (1)

subject to a ‘feasibility constraint’, which says that the
expected payments must at least cover the expected cost:

E [
∑

i πi(θ)pi(θ) − c(Q(θ))] ≥ 0 , (2)

‘individual rationality’ constraints, which say each peer
can expect positive net benefit:

E [πi(θi, θ−i) {θiu(Q(θi, θ−i) − pi(θi, θ−i)}] ≥ 0 , (3)

for all i, and ‘incentive compatibility’ constraints, such
that each peer i does best by declaring his true θi rather
than ‘free-riding’ by declaring some other θ′i:

E [πi(θi, θ−i) {θiu(Q(θi, θ−i) − pi(θi, θ−i)}]
≥ E [πi(θ′i, θ−i) {θiu(Q(θ′i, θ−i) − pi(θ′i, θ−i)}] , (4)

for all i and θ′i. It can be shown that the above reduces
to a problem of maximizing (1) subject to a constraint

E [
∑

i πi(θ)gi(θi)u(Q(θ)) − c(Q(θ))] ≥ 0 , (5)

where, h(·) being the probability density function of H ,

g(θi) = θi − (1 − H(θi))/h(θi) . (6)

This problem can be solved using Lagrangian methods
(see the Appendix). That is, there is a nonnegative λ
such that it is equivalent to solve the problem

maximize
π1(·),...,πn(·)

Q(·)
E

[ ∑
i πi(θ)(θi

+ λg(θi))u(Q(θ)) − c(Q(θ))
]
. (7)

Note that the optimal πi(θ) depends only on θi. We can
write πi(θ) = π(θi), where this is 1 or 0 as θi + λg(θi) is
or is not positive. Let us assume henceforth that g(θ) is
nondecreasing in θ. Then θ + λg(θ) is nonincreasing so
there is a θ∗ such that πi(θ) = 1 if θ > θ∗, and πi(θ) = 0
otherwise.

The full solution of our problem is, in general, very
complex. However, as in [6] we can use (7) to prove The-
orem 1 below, showing that when n is large, the problem
can be approximated, and a simple mechanism designed,



which obtains a value of the objective function that is
within o(n) of the maximum achievable. The intuition
underlying this result is that when n is large, the law of
large numbers assures the social planner that with high
probability the number of peers who will have preference
parameters in the interval [θ, θ+δ] will be within o(n) of
nh(θ)δ. Suppose he finds the mechanism that would be
optimal if this were true exactly (i.e., finds optimizing θ
and Q in (8) and (9) below). Then a mechanism setting
πi(η) = 1{η ≥ θ} and Q(θ) = Q will be nearly optimal
for the original problem.

Theorem 1 Suppose u(·) is bounded, and Q and θ are
the optimizing values of Z and y in the problem

maximize
y∈[0,1],Z≥0

{
nu(Z)

∫ 1

y

ηh(η)dη − c(Z)
}

(8)

subject to

n[1 − H(y)]yu(Z) − c(Z) ≥ 0 . (9)

Let P be the problem defined by (1) and (5). Sup-
pose we take as a feasible solution to P the variables
πi(η) = 1{η ≥ θ} and Q(θ) = Q. Then the expected so-
cial welfare is equal to (8) and this in only o(n) less than
the maximum possible social welfare achieved by mecha-
nism design.

Let again θ and Q be the maximizing values of the de-
cision variables in (8)–(9). Notice that all peers who are
allowed to use the good pay the same fee of f = θu(Q).
Peer i may use the good if and only if θi ≥ θ. This is
the same as the condition that his net benefit should
be nonnegative, i.e., θiu(Q) − f ≥ 0. The expected
number of peers for which this holds is n(1 −H(θ)) and
Q = n(1−H(θ))f . This means that there is actually no
need for the planner to intervene in an active manner.
The planner should be viewed as the software designer.
Once f has been set, the optimum π(·) and Q arise sim-
ply by peers making their own self-interested decisions.

As a simple illustrative example, suppose that u(Q) =
0.6Q1/2, c(Q) = Q, and θi is uniformly distributed on
[0, 1], so H(x) = x. The solution of (8)–(9) is θ = 1/4,
Q = 0.0126563n2 and the social welfare is 0.006328125n2.
The fee is 0.016875n. We can compare this to the max-
imized social welfare that could be achieved if we were
unrestricted by constraints of individual rationality and
incentive compatibility. This social welfare would be
0.01125n2, which is achieved by Q = 0.01125n2. The
need to satisfy the constraints leads to a reduction in
social welfare of 43.75%. Arguments in [9] show that if
it were not possible to exclude participants then the so-
cial welfare would tend to infinity at a rate slower than
O(n2) so that a vanishingly small amount of social wel-
fare is obtained relative to that which can be obtained
with exclusions.

2 A p2p file sharing system

We apply the above ideas to a problem of peer to peer
file sharing by defining the appropriate functions u and
c. Suppose that n peers make available files to share with
one another. It is the number of distinctly different files
which are shared that matters, so we must account for
the possibility that more than one peer will make avail-
able the same file. Suppose that the utility obtained by
peer i when the expected number of distinct supplied
files is Q, is θiu(Q), where u is concave in Q. This is
a key assumption in our modelling approach. Content
availability is a public good: all peers benefit from the
number of available files, and content is not consumed
by downloading. Next we model the cost c(Q) for pro-
visioning Q. We might imagine that each peer provides
the same number of files, say f , choosing these randomly
from amongst a set of N (we relax this equal contribu-
tion assumption later). Then the expected number of
distinct files that will be provided is

Q = N(1 − (1 − f/N)n) ,

so
f(Q) = N

(
1 − (1 − Q/N)1/n

)
.

Suppose that each peer incurs a cost in providing files
that is proportional to the number he contributes. For
simplicity we let the constant of proportionality be one
(noting that we could always re-scale the utility func-
tion). Thus the total cost is c(F ) = F , where F =
nf(Q), and this is a convex increasing function of Q.
Also, for any fixed Q, the cost nf rapidly increases with
n to the asymptote of −N log(1−Q/N). This is greater
than Q, the total cost if there were no duplication in
the files peers supply 1 Note (see Figure 1) that for a
large range of values of Q the cost is almost linear in
Q, but then increases rapidly as Q approaches N . For
example, for n = 100, we find nf(Q) = Q+0.00005Q2+
3.32 × 10−9Q3 + · · · . This justifies an approximation
c(F (Q)) = Q when Q/N is of moderate size.

A slightly more sophisticated model might imagine
that the peers share different numbers of files. Suppose
nρi of peers each share i files, each of them choosing
his i files randomly from amongst a set of N = na files,
a > 0. Let m be an upper bound on the number of
files that any one peer can share, and

∑
k ρk = 1. The

1 An alternative would be that a peer’s cost is proportional
to the rate at which he serves upload requests. Assuming files
are equally popular this means that the total cost incurred by all
the peers will be proportional to the product of the number of
participating peers (that generate the requests) and the number
of unique files, i.e., c(Q) = (

∑
i πi)Q. If peers can only access

files held within a certain neighbourhood of their location, this
might be better modelled as c(Q) = (

∑
i πi)βQ, where 0 < β < 1.

There is a problem reproving Theorem 1 because the proof that
Lagrangian methods work (proved here in the Appendix) no longer
holds. This is for future research. We would expect to be able to
address a limiting problem in which u(Q) is concave in Q and
c(Q) = [n(1 − F (θ)]βQ.
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expected number of distinct files supplied will be

Q = na

[
1 −

m∏
k=1

(
1 − k

na

)nρk
]

= na
[
1 − e−

∑
k kρk/a

]
+ o(1) . (10)

Now F = n
∑

k kρk is the total number of files provided
by the peers. So we can again use the same approxima-
tion as above:

Q(F ) = N
(
1 − e−F/N

)
. (11)

Note that as Q(F ) is concave in F , we have that ū(F ) =
u(Q(F )) is also concave in F . For a given Q we will
require

F (Q) = −N log (1 − Q/N) . (12)

Of course when Q/N is not close to 1, F (Q) = Q(1 +
1
2 (Q/N) + o(Q/N)), so again c(F ) ≈ Q.
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Figure 1: nf(Q) for N = 10000; n = 1, 2, 10, 100, 500

Both of the above lead to models that are covered by
the results of the previous section. The social planner
wishes to design a mechanism which maximizes social
welfare, subject to its being feasible, individually rational
and incentive compatible.

Following the second model above, continuing the as-
sumption that g is nondecreasing, dropping the bar from
ū(·), and noting that u(Q) is bounded by u(N), we apply
Theorem 1 and attain to within o(n) of the optimum by
choosing θ and F so as to

maximize
F, θ

nu(F )
∫ 1

θ

ηh(η) dη − F

such that

n[1 − H(θ)]θu(F ) − F ≥ 0 .

Let F and θ be the maximizing values of the decision
variables. We see that each peer who has a preference
parameter of at least θ is included and pays the same
fixed fee of θu(F ). Since the cost is linear in F this fee
can be paid ‘in kind’, i.e., without monetary payments:
each included peer pays his fee by contributing the same
number of files: F/n(1 − H(θ)).

Repeated rounds. In the limiting problem there is
no reason that a peer should be other than truthful in
representing himself to the system. If he knows that Q
unique files will be shared and that the fee is f , then
peer i should join if θiu(Q) ≥ f . In the non-limiting ver-
sion of the problem, addressed by the mechanism design
of Section 1, the individual rationality constraint (3) is
in terms of expected value, so for some θ−i it can be
that θiu(Q(θi, θ−i) − pi(θi, θ−i) < 0. When this hap-
pens, peer i might be tempted to defect and to not pay
pi(θi, θ−i). However, as file sharing system is intended
to last for more than one time step, we could operate a
‘tit-for-tat’-like protocol, that would penalize such defec-
tion, for example, by threatening to exclude peer i at a
later time when θ−i is such that his net benefit would be
positive. We are imagining that θ is not fixed, but varies
over time, as from time to time the peers’ preference pa-
rameters are freshly sampled from H . The effect of the
threat would be to make peer i willing to participate on
such occasions that he has to accept a short-term nega-
tive net benefit, knowing that on average he will benefit,
as is guaranteed by (1) and (3). If every peer’s prefer-
ences parameter varies over time with the distribution
H , each will obtain on average 1/nth of the maximized
social welfare.

3 Stability

Suppose that the social planner designs a mechanism
on the basis that there are n peers. He expects that
(1 − H(θ))n of them will pay a fee of f = θu(F ). Since
the fee is paid ‘in kind’ and equates to providing f files,
the total number of files that are provided will be F =
(1 − H(θ))nf .

Suppose that there are indeed n peers, but initially
some of them are dubious that F will be as large as the
planner claims. Consequently, some do not participate
and the number of files that is initially provided is F1 <
F . Once the peers have observed F1, those peers with
θi > f/u(F1) will realise that it is to their advantage to
participate. Their fees will provide F2 files where

F2 =
(

1 − H

(
f

u(F1)

))
nf . (13)

Write this as F2 = φ(F1) and imagine iterating Fk+1 =
φ(Fk), k = 1, 2, . . .. In general, there can be more than
one root to F = φ(F ). For example, suppose u(F ) =
0.6F 1/2, f = 5, n = 120, and θi is uniformly distributed
on [0, 1]. Then φ(F ) =

(
1 − 5/0.6F 1/2

)
(120)(5). In

this example there are two roots, F = 100.00 and F =
320.87. One can easily prove that if F1 exceeds the
smaller root then Fk tends to the larger root as k tends
to infinity. Otherwise Fk → 0. For F = 100 the social
welfare is 10, whereas for F = 320.87 it is 184.4. Thus
the greater F , to which the system converges, is also the
root for which a greater number of peers participate and
the greater social welfare is achieved.
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4 Heterogeneous file popularity

We can extend the above ideas to circumstances in which
files have different popularities. For example, suppose
the following scenario. There are popular files and less
popular files. A popular one is requested at twice the
rate of an unpopular one (and so generates twice the
cost to a peer who provides it), but is also twice as valu-
able. The total cost corresponding to the total upload
rate is2 c(F1, F2) = 2F1 + F2 and the utility is now, say,
u(2F1 + F2). The analysis is much as above. Each peer
is asked to contribute f1 type 1 files and f2 type 2 files.
Notice that because the ratio of value to cost is the same
for both file types, it is only the value of f = 2f1 + f2

that actually matters. So the planner has no preference
for the precise combination of f1 and f2 by which a peer
makes his contribution. Moreover, the planner can check
that a peer is making his required contribution simply
by verifying that the total rate at which files are up-
loaded from the peer is consistent with f . This agrees
with a commonly held belief amongst technologists that
the only thing that need be measured to police a peer’s
contribution to a file sharing network is the rate at which
uploads are made from the peer. If the value/cost ratios
had been different for the two file types, then it would
have been optimal to share only one type of file (the one
with greater value/cost ratio). This fact, and notions
of equilibrium economics, suggest that all file types that
are actually worth sharing will effectively have the same
value/cost ratio and hence the upload rate is to be a
good measure of a peer’s contribution.

5 Group formation

It may sometimes be possible for the global planner to
distinguish between types of peers and use this informa-
tion to model the distributions of their preference pa-
rameters more accurately. Suppose, for example, that
the population of peers consists of both ISDN dial-up
users and DSL users with a uniform distribution of their
preference parameters on [0, 0.5] and [0.5, 1] respectively.
This reflects the fact that DSL users value more and ben-
efit more from the shared content than do the dial-up
users.

As we have seen, the asymptotic problem that must
be solved to determine the optimal fixed fees is quite
simple. By computational experiments we can gain some
important insights into the formation of groups. There
are three possible scenarios that the planner could pur-
sue. In the first scenario, dial-up users and DSL users
form distinct groups A and B and do not share content.
In the second, they form a single group, in which they
share content, but their types (DSL or dial-up) are in-
distinguishable to the global planner. He only knows the
initial proportions of users of each type. The third sce-
nario is the same as the second, except that peers now
form a group in which they are distinguishable, i.e., they

2more precisely, by the model of footnote 1, proportional to

disclose their types to the planner. Which of these is
best for each user type? Does the answer depend on the
relative number of the users of each type? By solving
our fixed fee model we obtain some interesting insight
(see Figure 2).

(a) As the proportion of DSL users decreases, the DSL
users prefer the second scenario: a large indistinguish-
able group; their next preferred option is the first sce-
nario, when they form their own distinct group. Prefer-
ence for the first scenario becomes even more marked as
the distribution of the preferences becomes less spread
(e.g., uniform on [0.8, 1], rather than on [0.5, 1]); con-
versely, as it becomes more spread they tend to prefer
the second scenario.
(b) As their proportion decreases, dial-up users favour
the third scenario since at the SW optimum the DSL
users offer the majority of the content. The second sce-
nario, of a single indistinguishable group, is not so at-
tractive, as they are forced to pay a substantial fixed
fee. When their number is small they gain by the large
amount of content made available by the DSL users,
compared to the content they would obtain in their own
group. This difference becomes negligible when they are
the dominant type in the mixture.

Welfare gain for group B
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Figure 2: Welfare gain of dial-up (group A) and DSL
(group B) users when forming groups in which they
are distinguishable and indistinguishable to the planner
compared to the welfare they obtain when they form dis-
tinct groups.
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The underlying reason is rather simple: when forming
a larger indistinguishable group, DSL users benefit from
the larger content available and the fact that the fixed
fee, which is the same for all, is less than the 0.5 they
would pay if they could be distinguished. Furthermore,
dial-up users who can afford it contribute a substantial
amount to the common cost, whereas if they can be dis-
tinguished, they free-ride on the DSL users by paying
zero fees.

An interesting issue for further research is to design
a sub-optimal policy that provides incentives for both
types to combine into one group. For instance, we could
reduce the cost imposed on DSL user by limiting the
download rates of dial-up users, or change the fee of DSL
users to make it attractive for them to join and declare
their type. It would also be interesting to pursue the
possibility of permitting more than one level of partic-
ipation; we could arrange for those peers who desire a
greater average rate of uploading to pay a greater fee.
Ideally, the allowed options would target the different
peer types and provide the incentives for each peer to
self-select the option that is targeted at his type. For in-
stance, imagine that each peer has the choice between an
effective u of u(F1 +F2), for a fee of f2, or u(ρ(F1 +F2)),
for a fee of f1, where ρ < 1 and f1 < f2. Note that
adding congestion cost as in the footnote 1 reduces the
incentives for building larger groups.

In the previous analysis we assumed that it is equally
costly for DSL and dial-up users to share a file. This may
be a reasonable approximation when the up-link speed
of DSL users is small. But other times this may not be
the case. Suppose that our two user types both have θs
distributed uniformly in [0, 1], but their costs for sharing
f files are af and f respectively, a > 1. The results of
our experiments for this model are similar to those above.
The type 1 peers, for whom file sharing is more costly,
benefit when all peers disclose their types, whereas the
type 2 peers may not. Type 1 peers are better off both
because of the larger content selection and because they
contribute less.

Best splitting. Suppose the global planner could ob-
tain information that would allow him to partition peers
into smaller subgroups, such that the preference parame-
ters in each subgroup are distributed on non-overlapping
subintervals of [0, 1]. Can he always gain by doing this?
The answer is no. Suppose that the initial distribution
is uniform on [0, 1]. Then, depending on the growth of
the function u(F ), a finite splitting of this initial inter-
val may be optimal, and there will be nothing extra to
gain from further splitting. For instance, if u(F ) = F a,
and a < 1/2, then splitting [0, 1] in half is enough. If
a < 2/3, then splitting [0, 1] into three equal subinter-
vals is enough, and so on.

6 Parameter discovery

We have assumed that n, u(·) and H(·) are known to
the social planner when he computes the optimal fee f .
It would be an interesting issue for further research to
see how, in absence of this knowledge the planner might
take advantage of what we have already learned about
the form of the optimal policy to design an adaptive
policy that learns the parameters. Here, we make only
some preliminary remarks. If only n is not known, the
planner could set an entrance fee and then observe the
size F at which the system stabilizes (after iterations of
(13)). Then n can be estimated by F/(1 − H(f/u(F )).

If only H is not known, and peers actually declare
their preference parameters, then the planner might es-
timate H from the empirical distribution of the declared
preference parameters, say Ĥ, and then implement the
solution that is optimal for Ĥ . For n large he should
have Ĥ ≈ H , provided the peers are truth-telling. In
a repeated game formulation, in which the preference
parameter of a typical peer is repeatedly sampled from
H(·), then his average net benefit will 1/nth of the total
social welfare and it will indeed be optimal for him to be
truth-telling.

However, if a peer’s preference parameters are cho-
sen once for all or remain relatively static for a long time
then there may be an incentive for a group of peers to
lie about their preference parameters, hoping to fool the
social planner into mis-estimating H and doing better
for themselves thereby. Consider the following exam-
ple (for which calculations were done with Mathemat-
ica). Suppose that N = 100000, n = 100, u(Q(F )) =
2
√

N(1 − exp(−F/N)). Suppose that θi is one of {0.25,
0.5, 0.75, 1.0} with frequencies 0.4, 0.4, 0.1 and 0.1 re-
spectively. The mechanism which maximizes social wel-
fare takes θ = 0 and F = 2183.5. Each of the peers who
has θ = 0.5 makes net benefit of 24.6390. However, sup-
pose that the peers who have θ = 0.5 act in concert and
arrange for one-quarter of them to untruthfully declare
it as 0.75. The central planner will conclude that the
frequencies of the four possible parameter values are 0.4,
0.3, 0.2 and 0.1, and for this he maximizes social welfare
by taking θ = 0, F = 2411.14. Under this mechanism,
the peers who have θ = 0.5 will now make a greater net
benefit of 24.6975. They profit from being untruthful.
(However, if all the peers who have θ = 0.5 untruthfully
declare it as 0.75 then they do not do better than if they
are all truthful.) Another way to view this example is
that it shows there can be more than one Nash equilib-
rium in the n-person game being played by the peers.

Notes

Another application of the ideas in Section 1 is in our
paper on wireless LANs [6]. Our key Theorem 1 is moti-
vated by reading [9] [11], but our proof (in [6]) is perhaps
simpler, being a fairly straightforward application of the
law of large numbers (though at the price of missing some

5



finer asymptotic detail). We are uniquely able to deal
with multiple constraints because of our new method of
establishing the applicability of Lagrangian methods for
the mechanism design problem, as we explain for one
constraint in the appendix below.

Segal [14] has considered a related setup in which
a monopolist is trying to maximize his profit by sell-
ing units of a single good to n buyers (agents). He de-
signs a mechanism such that the price each buyer pays
is a function of all n buyers’ declared valuations (our
θ). He supposes that the underlying distribution F of
these valuations is unknown and shows how to define the
mechanism so as n tends to infinity, it achieves the opti-
mal monopoly profit that could be obtained had F been
known. Essentially, the formulae are the same, except
that θi is taken to be a sample from F̂i(·|θ−i), which is
F conditional on knowing θ−i. Like us, he finds that
the limiting policy is to offer each buyer the same fixed
price, but he does not derive the o(n) error, deal with
the additional optimization over Q that our public good
model involves, nor explain any application to a problem
of p2p resource allocation.

A comparison of complete information and incom-
plete information schemes in the context of our public
good formulation is presented in [2]. The inefficiency of
p2p systems has been pointed out in [1] [13] and design-
ing incentives for contribution using reciprocity concepts
is discussed in [8] [10] [3] [7] among others. There exist
several real p2p applications which use reciprocity-based
(e.g., [4]) or minimum contribution (see Direct Connect
—http://www.neo-modus.com) mechanisms to provide
the necessary incentives to peers to share their resources.
Implementation issues such as how the accounting of the
information can be performed, how incentive rules and
exclusions can be enforced, security issues, etc. are dis-
cussed in [5] [12] [15].

We are grateful to Robin Mason for pointing out the
important connection of p2p with public good models
and fixed fee contributions and Peter Norman for some
helpful discussions about mechanism design. A longer
version of this paper will be placed at
www.statslab.cam.ac.uk/Reports/2004/2004-01.pdf.
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A Appendix

To see that the problem of (1) and (5) can be addressed
by Lagrangian methods we reformulate it as

maximize
x1(·),...,xn(·),Q(·)

E [
∑

i xi(θ) − c(Q(θ))]

subject to constraints on the nonnegative decision vari-
ables, x1(θ), . . . , xn(θ), Q(θ) of xi(θ) − θiu(Q(θ)) ≤ 0,
for all i, θ and −E

[∑
i xi(θ)g(θi)

θi
− c(Q(θ))

]
≤ 0. The

objective function is concave in the decision variables
and the left hand sides of the constraints are convex in
the decision variables. These are sufficient to guarantee
existence of a nonnegative λ such that it is equivalent to
solve

maximize
x1(·),...,xn(·),Q(·)

E
[∑

i xi(θ)
(
1 + λg(θi)

θi

)
− c(Q(θ))

]
such that xi(θ)− θiu(Q(θ)) ≤ 0 for all i, θ. This may be
seen to be equivalent to (7).
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